Name:	
Date·	Period:

Minerals and Rocks

The Physical Setting: Earth Science

Class Notes: Minerals and Rocks

I. Minerals

•	Minerals are	the ingredie	nts needed	to form t	the different	types c	of rocks
---	--------------	--------------	------------	-----------	---------------	---------	----------

•	<u> HOCK</u> -					

•	Mineral -	

•	Inorganic -	
	•	

- Minerals form by three methods:
 - 1. <u>Crystallization</u> a process of organizing ______ to form crystalline solids
 - 2. Recrystallization the cooling and hardening of _____ or magma into minerals
 - 3. Rearrangement the realignment of atoms in minerals under high _____ and _____
- Most rock forming minerals are silicates that result in a tetrahedron shape
 - Four-sided units of 4 _____ and 1 ____

•		are responsible
	for the physical and chemical properties a mineral possesses	
•	Each mineral has a set of physical and chemical properties that can be used to ide	entify the sample
•	The methods we use to classify minerals are:	
	1. Color - a visual attribute of an object based on perception	
	 One of the most obvious, but not the most reliable 	
	Many of the 4000 known minerals share similar colors	
	2. Streak -	
	Weathering changes the outside color, but streak gives the true	color
	3. <u>Luster</u> -	
	Two types of luster:	
	Metallic Luster - shines like stainless steel	
	Nonmetallic Luster - earthy or dull shine	
	4. Density -	
	Sample Problem: a student measures the mass of a mineral to and calculates the volume to be mL. What is the description of the problem is a student measures the mass of a mineral to and calculates the volume to be mL.	•
	Write the Formula:	
/	Show All Work:	
_	Answer:	

•	The methods we will use are (continued):
	5. Hardness
	Mohs Hardness Scale is used to classify hardness

Hardness	Mineral	Test		
1 Talc		Finger nail scratches easily		
2	Gypsum	Finger nail scratches		
3	Calcite	Copper penny scratches		
4 Fluorite		Steel knife scratches easily		
5 Apatite		Steel knife scratches		
6 Feldspar		Steel knife will not scratches		
7	Quartz	Will scratch glass and steel		
8	Topaz	Harder then any common mineral		
9	Corundum	Scratches topaz		
10	Diamond	Hardest mineral		

6.	Cleavage -	-	
	•	Mohs Hardness Scale is used to classify hardness	
7.	Fracture -		
	•	Tends to lack preferred zones of weakness	
8.	Acid Test -	-	

• Calcite and Dolomite both react with acid

II. Igneous Rocks

•	Igneous Rocks -	

- Methods to classify igneous rocks:
 - 1. Environment of Formation -
 - <u>Magma</u> _____
 - Plutonic -
 - Intrusive -
 - <u>Lava</u> ____
 - Volcanic -
 - Extrusive -

2.	Color -				
3.	Comp	osition -	- a mixture of material	s that make up an igneous rock	
	•	<u>Felsic</u>			
	•	<u>Mafic</u>	- 		
4.	<u>Texture</u>	<u> </u>			
	•	<u>Vesicu</u>	<u>ılar</u>		
	•	<u>Porph</u>	yritic -		
5.	<u>Crysta</u>	l Size -			
	•	Crysta	al size is an important f	actor to determine the environment o	f formation
		•		_ the cooling time the	the crystal size
			(coarse or very coars	•	
		•	The (glassy or fine)	_ the cooling time the	the crystal size
			(Siaco) or in io		

Coarse Grained

III. Sedimentary Rocks

- Sedimentary Rocks -
- <u>Lithification</u> _____
- Methods to classify sedimentary rocks:
 - 1. Texture -
 - Texture is the main factor in sedimentary rock identification
 - Clastic -

- Crystalline -
- Bioclastic -

Contains Shell Fragments

Methods to classify sedimentary rocks (continued):

2. Formation -

• Most sedimentary rocks form under large bodies of water by the following:

• <u>Cementation</u> -

 Occurs as water between sediments dissolves and the remaining materials hold the clasts together

 Usually results in a decrease in pore space and sediments become more tightly packs

3. Characteristics -

• Form at or near Earth's surface where weathering can break down rocks into pieces

- Forms in horizontal layers
- May contain fossils

Fossils

Scheme for Sedimentary Rock Identification

	INORG	ANIC LAND-DERIV	ED SEDIMENTARY R	OCKS	
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAP SYMBOL
	Pebbles, cobbles, and/or boulders		Rounded fragments	Conglomerate	60000000000000000000000000000000000000
	embedded in sand, silt, and/or clay	Mostly quartz, — feldspar, and —	Angular fragments	Breccia	Д., Ф., Д., Д., Ф.,
Clastic (fragmental)	Sand (0.006 to 0.2 cm)	clay minerals; may contain	Fine to coarse	Sandstone	
	Silt (0.0004 to 0.006 cm)	fragments of other rocks	Very fine grain	Siltstone	
	Clay (less than 0.0004 cm)	and minerals —	Compact; may split easily	Shale	
	CHEMICALLY AN	D/OR ORGANICAL	LY FORMED SEDIME	NTARY ROCKS	
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAP SYMBOL
	Fine	Halite	Crystals from	Rock salt	
Crystalline	to coarse crystals	Gypsum	chemical precipitates	Rock gypsum	
		Dolomite	and evaporites	Dolostone	
Crystalline or bioclastic	Microscopic to	Calcite	Precipitates of biologic origin or cemented shell fragments	Limestone	
Bioclastic	very coarse	Carbon	Compacted plant remains	Bituminous coal	

IV. Metamorphic Rocks

•	Metamorphic Rocks -	
	-	

•	Parent Rock -	

• <u>Heat</u>

- Rock expands when heated causing the atoms to break apart and move freely
- As temperature decreases atoms join with other atoms to form different compounds
- The result is a structural and chemical change

• Pressure

- Under extreme pressure at great depths inside the Earth, atoms bonds are broken and rearranged into a denser and more compact structure
- Methods to classify metamorphic rocks:
 - 1. Texture the general appearance of the rock

•	Foliation -	

- Banding -
- Non-foliated -

Non-foliated

Metho	ds to classify metamorphic rocks (continued):					
2.	Grain Size -					
3.	Composition-					
4.	Type of Metamorphism-					
	Regional Metamorphism -					
	 Most metamorphic rocks form regionally under a mountain or deep in- side the Earth 					
	Contact Metamorphism -					

Scheme for Metamorphic Rock Identification

TEXTURE		GRAIN SIZE	COMPOSITION		N	TYPE OF METAMORPHISM		COMMENTS	ROCK NAME	MAP SYMBOL	
	MINERAL	Fine					— Regional		Low-grade metamorphism of shale	Slate	
FOLIATED		Fine to medium				MPHIBOLE GARNET KENE	(Heat and pressure increases)		Foliation surfaces shiny from microscopic mica crystals	Phyllite	\$
			MICA	QUARTZ	AMPHIBOLE				Platy mica crystals visible from metamorphism of clay or feldspars	Schist	
	BAND- ING	Medium to coarse			AM	PYROXENE	•	\	High-grade metamorphism; mineral types segregated into bands	Gneiss	
	NONFOLIATED	Fine		Carbon			Regional		Metamorphism of bituminous coal	Anthracite coal	
		Fine		Various minerals			Contact (heat)		Various rocks changed by heat from nearby magma/lava	Hornfels	Σ Τ Λ Ν Σ Η Η Λ Ν Τ Η
		Fine		Quartz			- Parisad		Metamorphism of quartz sandstone	Quartzite	
		to coarse			Calcite and/or dolomite		Regional or contact		Metamorphism of limestone or dolostone	Marble	
		Coarse			ious erals				Pebbles may be distorted or stretched	Metaconglomerate	0.000000000000000000000000000000000000

V. Rock Cycle

•	Rock Cycle -	

- Any rock type can change into another rock type
- Therefore any rock could contain materials that were one part of another rock
- Igneous Rock -

- <u>Driving Forces</u> the processes that create uplift, weathering, erosion, pressure, and melting to form the different rock types
 - _____
 - •
 - •

Rock Cycle in Earth's Crust

